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Quantum chaos of a particle in a square well: Competing length scales and dynamical localizatio

R. Sankaranarayanan,* A. Lakshminarayan,† and V. B. Sheorey‡

Physical Research Laboratory, Navrangpura, Ahmedabad 380 009, India
~Received 5 May 2001; published 21 September 2001!

The classical and quantum dynamics of a particle trapped in a one-dimensional infinite square well with a
time-periodic pulsed field is investigated. This is a two-parameter non-KAM~Kolmogorov-Arnold-Moser!
generalization of the kicked rotor, which can be seen as the standard map of particles subjected to both smooth
and hard potentials. The virtue of the generalization lies in the introduction of an extra parameterR, which is
the ratio of two length scales, namely, the well width and the field wavelength. IfR is a noninteger the
dynamics is discontinuous and non-KAM. We have explored the role ofR in controlling the localization
properties of the eigenstates. In particular, the connection between classical diffusion and localization is found
to generalize reasonably well. In unbounded chaotic systems such as these, while the nearest neighbor spacing
distribution of the eigenvalues is less sensitive to the nature of the classical dynamics, the distribution of
participation ratios of the eigenstates proves to be a sensitive measure; in the chaotic regimes the latter is
log-normal. We find that the tails of the well converged localized states are exponentially localized despite the
discontinuous dynamics while the bulk part shows fluctuations that tend to be closer to random matrix theory
predictions. Time evolving states show considerableR dependence, and tuningR to enhance classical diffusion
can lead to significantly larger quantum diffusion for the same field strengths, an effect that is potentially
observable in present day experiments.

DOI: 10.1103/PhysRevE.64.046210 PACS number~s!: 05.45.Mt, 72.15.Rn, 68.65.Fg
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I. INTRODUCTION

For several years now studies on quantized chaotic
tems have increased significantly with the object of revea
quantum mechanical manifestations of classical chaos@1,2#.
The bulk of the work has used smooth Hamiltonian syste
If we start perturbing an integrable system, classical Ham
tonian chaos may develop through a gradual destructio
invariants. The celebrated Kolmogorov-Arnold-Mos
~KAM ! theorem gives conditions as to when a given to
will be only distorted. This scenario has been widely stud
in two-degree-of-freedom systems or two-dimensional a
preserving maps. However, there are conditions upon wh
the KAM theorem rests that may not always be satisfied
certain systems of physical interest. In particular, if the p
turbation is not sufficiently smooth or even discontinuous
KAM scenario may break down. Large scale chaos may
stantaneously develop in the system. One other way tha
KAM scenario fails is when the unperturbed system is fu
resonant, as in the Kepler problem. We deal in this pa
with the former kind of non-KAM behavior.

We first discuss the prevalence of systems where s
effects may be seen. The simplest systems where Ha
tonian chaos can develop are the so cal
1.5-degree-of-freedom system, which are time-depend
one-degree-of-freedom systems. Thus we consider the r
Hamiltonian

H5
pu

2

2
1 f ~ t !V~u!,
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whereV(u) is an external potential that is periodic with p
riod 2p, and f (t) is a periodic function of time with period
T. A lengthening pendulum, for instance, may be the syst
under study. IfV(u) is sufficiently smooth, the KAM theo-
rem scenario combined with the Poincare´-Birkhoff theorem
provides the generic behavior. The smoothness or at l
continuity ofV(u) is provided by the periodic boundary con
ditions in the angular position of the rotor. Introducing di
continuous potentials will lead tod function forces equiva-
lent to walls of certain heights.

This brings us to a natural class of systems where n
KAM behavior will be the rule rather than the exceptio
externally forced particles in wells. This forms a broad cla
of systems that have evoked considerable interest and
search since the development of quantum wells and d
One of the experiments where quantum ‘‘scarring’’ of wa
functions was reported involved resonant tunneling of a p
ticle across a well in which there were external electrom
netic fields@3#.

In fact the simplest of such systems involve a particle
one-dimensional infinite square wells~1D billiards! with
time-dependent external fields. Consider as an example
Hamiltonian

H5H01e cos~vt !cos~2px/l!, ~1!

whereH05p2/21Vsq(x;a), describing such a particle. Th
potentialVsq(x;a) is the confining infinite square well po
tential of width 2a, centered at the origin. Heree andl are
the field strength and wavelength of the external field wh
is being modulated in time with frequencyv.

It is easy to verify that the equations of motion are inva
ant under the following transformation:

t→v0t, p→p/2av0 , x→x/2a,
©2001 The American Physical Society10-1
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and

e→e/~2av0!2, l→l/2a, v→v/v0 .

Here the frequencyv0, which sets the new time scale,
arbitrary. Note that the new scaled variables and parame
are referred to by the old symbols and they are dimens
less. Settingv05v in the above transformation, we hav
effectively two parameters:e and R52a/l. Here R is the
ratio of the two length scales of the system, i.e., the w
width and field wavelength. The presence of two compet
length scales provides a rich range of non-KAM behavio
In particular, if the dimensionless ratioR is a noninteger
there is the possibility of observing non-KAM phenomen

Under the perturbation we can expect roughly that sta
whose absolute value of the initial momentum is less th
A2ueu will be most affected. Thus low energy states will b
most affected by the time-dependent forces. Figure 1 sh
the effect of the parameterR. While for R51 the system is
essentially KAM and has KAM tori interspersed with res
nances, any small deviation ofR away from unity destroys
low energy KAM curves and leads to increased chaos. Fig
2 shows the fate of an individual KAM torus for whichR
51 is a ‘‘bifurcation’’ point in parameter space and whic
changes stability on either side. We expect such behavio
be generic to a large class of similar systems and in
paper we will exhaustively study a ‘‘standard map’’ versi
of these systems. Just as the standard map provides a
stract view of behavior around nonlinear resonances, we
pect our model’s analysis to provide such a view for the
systems.

Many models have been studied where the time dep
dencef (t) is a train of Diracd functions, the periodically

FIG. 1. Typical phase space of the system governed by
Hamiltonian ~1! with e50.001 andv51. The lower momentum
region is increasingly chaotic when the length scales do not ma
04621
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kicked systems@4#. The reasons are evident: they are t
simplest Hamiltonian systems where many generic featu
of chaotic complex systems may be observed; and they a
a partial integration of the equations of motion, from kic
to-kick, enabling us to study iterative ‘‘mappings’’ rathe
than differential equations. Quantum mechanically the s
plification enables us to partially integrate the Schro¨dinger
equation and write the kick-to-kick propagator, or Floqu
operator, analytically@5#.

An important paradigm in this class is thed kicked rotor
from which is derived the standard map@6,7#. The dynamical
richness of the classical system that obeys the KAM theo
and the consequent smooth transition to chaos are now
known and fairly well understood@8–10#. The corresponding
quantum system has also been studied quite extensively
model of ‘‘quantum chaos’’~see@11# for an early review of
this!, and continues to provide an excellent model to nume
cally test our understanding of such systems@12#.

The periodic input of energy into the system through t
kicks can result in a diffusive increase of the momentum, a
strong kicking strength can lead to unbounded energy gro
classically. However, an important result of quantization
that the eigenfunctions~quasienergy states! are generically
exponentially localized in momentum space, which sup-
presses the momentum diffusion even in the highly cha
regime. A plausible mechanism for this ‘‘dynamical localiz
tion’’ was suggested when an analogy was found@13# to
Anderson type localization of electrons in random on-s
potentials@14#. Experimental realizations of thed kicked ro-
tor, with cold atoms in pulsed standing laser fields@15#, have
confirmed the quantum suppression of diffusion. The loc
ized states in unbounded momentum space result in qu

e

h.

FIG. 2. Shown are orbits of Fig. 1 having identical initial co
ditions. The initial condition corresponds to a KAM torus in th
lower momentum region forR51 ~the negative momentum regio
is not shown here!. Note the abrupt change in stability and th
nongeneric features of the resultant phase space structures.
0-2



at
ar
rib
io
at
tr

ec
o
en
te

c

M
u

f
he
d

e

u
of

tia
-

er
h

rv

ju
s

ne

e

m

In

s a

s,
nd-
oes
ries
y a
This
p.

ll

e

and

are
on-

We
eld
ous

ori

M
s-
to

QUANTUM CHAOS OF A PARTICLE IN A SQUARE . . . PHYSICAL REVIEW E 64 046210
independence of the quasienergies, and the random m
properties@16,1# expected of quantized chaotic systems
not seen. For instance, the nearest neighbor spacing dist
tion is Poisson rather than Wigner and the eigenfunct
components are not Gaussian distributed. It must be st
that most of these results are numerical and larger ma
calculations that are ‘‘more semiclassical’’ may show sp
tral transitions as the bulk of the eigenfunctions spread
and overlap with each other while the tails are still expon
tially localized. Some evidence of this will also be presen
in this paper.

Following our motivational discussion above, we repla
the time dependence by a series ofd functions to facilitate
the derivation of a map in which we can study non-KA
behavior of the kind suggested above. Recently study of s
systems has begun@17,18#. For instance, in@17# it is shown
that the quantum states are extended and delocalized in
highly chaotic~strong field! regime. In turn, the spacing o
the quasienergies, unlike in the kicked rotor, follows t
Wigner distribution. It is argued that the extended states
overlap and hence the corresponding quasienergies are
independent, resulting in level repulsion. Part of the pres
paper also critically examines these results. In@18# a classi-
cal analysis of a generalized system was carried out to
derstand the changes of stability that occur as a functionR
and some of these results will be summarized below.

II. CLASSICAL SYSTEM

The system of interest is a particle inside the poten
Vsq(x;a) in the presence of a particular time-periodic im
pulse. We consider the Hamiltonian given by

H5H01e cos~2px/l! (
n52`

`

d~n2t/T!. ~2!

The kick-to-kick dynamics of the particle immediately aft
each pulse can be described by an area preserving map w
in dimensionless form is

Xn115~21!Bn$~Xn1Pn!2sgn~Pn!Bn%,
~3!

Pn115~21!BnPn1~K/2p!sin~2pRXn11!.

Here Bn5@sgn(Pn)(Xn1Pn)11/2# is the number of
bounces of the particle between the walls during the inte
between thenth and (n11)th kick, and@•••# stands for the
integer part of the argument. The state of the particle
after the nth kick is now given in the new variables a
Xn ,Pn . The sign of the momentum (61) is given by
sgn(Pn). The following scaling relations are used to redefi
the variables and parameters:

Xn5
xn

2a
, Pn5

pnT

2a
, K5

2ep2T2

al
, R5

2a

l
. ~4!

We note thatuXnu<1/2 and effective parameters of th
particle dynamics areK, the field strength, andR, the ratio of
the two length scales. The map in~3! shows the principal
features that we discussed earlier in the Introduction and
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qualify as a ‘‘standard’’ map for such non-KAM systems.
fact there is a close relationship between this ‘‘well map’’~3!
and the standard map itself that allows us to study it a
generalized standard map~GSM! @18#. This is the map

Pn115Pn1~K/2p!sin~2pRXn!,
~5!

Xn115Xn1Pn11 ~mod 1!,

which is defined on a cylinder (2`,`)3@21/2,1/2). The
well map and the GSM differ only in boundary condition
i.e., the former and latter have reflective and periodic bou
ary conditions, respectively. It is easy to see that this d
not play any effective role, in the sense that the trajecto
as evolved under the two systems can at most differ b
sign, depending on the number of bounces undergone.
fact considerably simplifies our analysis of the well ma
When R51, the GSM is the well studied and fairly we
understood standard map of thed-kicked rotor.

The dynamics of the GSM is highly chaotic and diffusiv
in the strong field regime (K@1). In addition, it exhibits
other interesting features like the development of chaos
hence diffusion even in the weak field regime (K,1) when
RÞ j wherej is a positive integer~see Fig. 3!. Note that the
phase space portraits of both the well map and the GSM
same. Such dynamical features are in fact common in n
KAM systems, and one such situation is shown earlier.
can understand the development of chaos at low fi
strengths from the observation that the otherwise continu
map is discontinuous whenRÞ j . The KAM theorem does
not hold for the discontinuous case and no smooth KAM t

FIG. 3. Phase space portrait of the GSM withK50.3. ForR
51, the dynamics is nearly regular wherein many smooth KA
tori are seen. WhenR departs from unity the dynamics is increa
ingly complex and no KAM tori are seen. This may be compared
the lower momentum region in Fig. 1.
0-3
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exist in the phase space, however smallK may be. In the
absence of KAM tori, the phase space is chaotic and di
sive even in the weak field regime. Moreover, whenR
,1/2 the GSM is a hyperbolic system. For a more detai
investigation of the GSM we refer the reader to@18#.

III. QUANTUM MECHANICS OF THE TRAPPED
PARTICLE

For a Hamiltonian that is periodic in time with periodT
(52p/v), solutions of the Schro¨dinger equation satisfy the
eigenvalue equation@19#

Uuc j&5e2 ia j T/\uc j&, ~6!

whereU is the one-period time evolution operator. Hereuc j&
anda j are the quasienergy, states and quasienergies, re
tively. It is to be noted that the inner product of two arbitra
solutions of the Schro¨dinger equation for an arbitrary time
dependent Hamiltonian is independent of time due to
Hermiticity of the Hamiltonian. As a consequence of th
states corresponding toa i and a j such thata i2a jÞn\v
~wheren is an integer! are orthogonal at a given time. Ifa i
2a j5n\v, the states are degenerate and hence the qua
ergies are uniquely defined modulo\v. From the set of all
orthogonal states we may write the general solution a
given time asuC&5( j cj uc j&.

A. Matrix representation of U

Periodically kicked systems are particularly easy to stu
sinceU can be written immediately by integrating the Schr¨-
dinger equation between successive kicks. For the Ha
tonianH in Eq. ~2! we have

U5 expH 2 ik cosS 2px

l D J expH 2 i
H0T

\ J , ~7!

wherek5eT/\. Note that the above time evolution operat
is the quantum counterpart of the well map and not tha
the GSM. The eigensystem in Eq.~6! may be solved by
diagonalizing a matrix representation ofU. The natural
choice of basis for theU matrix is the eigenstates of th
unperturbed HamiltonianH0:

H0un&5Enun&, ~8!

wheren51,2,3, . . . . Theenergy eigenfunctions and eige
values are

^xun&55
1

Aa
cosS npx

2a D for n odd,

1

Aa
sinS npx

2a D for n even,

En5
n2p2\2

8a2
. ~9!

The unitary matrixU is then calculated as
04621
-

d

ec-

e
,

en-

a

y

il-

f

Umn5^muUun&

5^muexp$2 ik cos~2px/l!%un&e2 in2t[Fmne
2 in2t,

~10!

where we have defined an effective Planck constant as

t5
p2\T

8a2
. ~11!

As the external field preserves parity we have

Fmn5H 0 if m1n is odd

1

2p
$Q(m2n)/22~21!nQ(m1n)/2% if m1n is even,

~12!

where

Ql5E
2p

p

cos~ lu!e2 ik cos(Ru)du ~13!

andu5px/a. We note thatQl is a Bessel function integra
for integerR, while for nonintegerR the integral constitutes
a kind of ‘‘incomplete’’ Bessel function. Invoking the Bess
function Js(k) through the identity

e2 ik cosu5 (
s52`

`

~2 i !sJs~k!e2 isu

the integral can be evaluated as a series:

Ql52pJ0~k!d l ,012(
s51

`

~2 i !sJs~k!Cs, ~14!

where

Cs5E
2p

p

cos~ lu!cos~sRu!du

5H ~21! l2sRsin~sRp!

~sR!22 l 2
for sRÞu l u

p for sR5u l u.

The relationJ2s(k)5(21)sJs(k) has been used in Eq.~14!.
Note that ifR is an integer Eq.~14! simplifies to

Ql52p(
s50

`

~2 i !sJs~k!d u l u,sR ~15!

and a single term is picked out of the infinite series.
The forms ofQl allow us to assess the fall of the matr

elements of the unitary matrixU. For integerR the unitary
matrix can be essentially banded as the matrix elements
off exponentially after a certain cutoff. ForR51, as is well
known and can be seen from above forl .k the matrix ele-
ments fall off exponentially, wherel measures the distanc
from the diagonal. On the other hand whenR is not an inte-
0-4
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QUANTUM CHAOS OF A PARTICLE IN A SQUARE . . . PHYSICAL REVIEW E 64 046210
ger, apart from the Bessel function terms there are terms
are decreasing only polynomially inl. For instance, when
R51/2 we have

Ql52p~21! lJ2l~k!1~21! l8

3 (
s51,3,5, . . .

`
~2 i !ss sin~sp/2!

s224l 2
Js~k!. ~16!

The infinite series gets effectively cut off fors.k. The finite
sum has terms that only decay asl 22. Thus nonintegerR
values imply an important characteristic of the unitary qu
tum map: the polynomial fall of matrix elements, as oppos
to the exponential fall characterizing integerR. In fact, we
may speculate whether non-KAM systems arealwayschar-
acterized by polynomially decaying matrix elements in t
unperturbed basis. According to earlier studies eigenfunc
localization crucially depends on the way in which mat
elements decrease.

WhenR51, the classical equivalence of the kicked rot
to the particle in a well was noted above. It is easy to see
the equivalence persists quantum mechanically also.
parity symmetry reduced rotor unitary matrix is identical
the well unitary operator in this case and hence odd state
the rotor correspond to odd states of the well, while the e
states have a similar relationship. Thus all that is known
the quantum standard map, including exponential local
tion of eigenstates, may be carried over to the well sys
with R51. This allows us to address interesting questions
deviations from the standard map in a single model.

The perturbing potential cos(2px/l) preserves the parity
of H0, and henceU has symmetry of parity. In what follows
we consider only the states that have odd parity. In addit
the system has spatial translational symmetry whenR is an
integer. Let us define a transformation for integerR as

Tf ~X!5 f „~X11/R! mod 1… ~17!

such that T Rf (X)5 f (X). T has the eigenvaluesb l
5 exp(i2lp/R), where l 50,1,2, . . . ,(R21). The commuta-
tion relation@U,T #50 leading toT uc&5b l uc&. For R52,
b l561; in this case we consider only the states that co
spond tob l51.

The dimensionless quantum parametersk and t are re-
lated to the classical parameters through the relationK/R
58kt. The semiclassical limit isk→` andt→0, such that
kt is fixed. Any arbitrary state of the system at a given tim
is uC(t)&5(nAn(t)un& and its time evolution is given by
Am(t1T)5(nUmnAn(t).

B. Quantum resonance

Here we investigate if the parameterR has any effect on
the important phenomenon of ‘‘quantum resonance.’’ W
notice that the unperturbed motion of the particle, given
the HamiltonianH0, between the kicks simply adds phase
the wave function components@when expressed in the unpe
turbed basis, as in Eq.~10!#. At resonance (t52p), the un-
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perturbed motion between the kicks is absent. In this ca
without loss of generality, the time evolution of an arbitra
state of the system is

uC~ t !&5e2 ik cos(2px/l)tuC~0!& ~18!

and thusuC(t)u25uC(0)u2. Note that heret is the number of
kicks. The kinetic energy of the particle is then

E~ t !5E~0!1
2\2

2 H S 4pkt

l D E
2a

a

sinS 2px

l D
3ReS iC* ~0!

]C~0!

]x Ddx

2S 2pkt

l D 2E
2a

a

uC~0!u2 sin2S 2px

l DdxJ . ~19!

In the limit t→` the energy grows quadratically with th
number of kicks. IfuC(0)&5un&, i.e., the initial states is one
of the unperturbed states itself, the energy is purely q
dratic. In fact, the energy can be found exactly as

E~ t !5E~0!H 11S ktR

n D 2

~22A!J , ~20!

where

A5H sin~2pR!

pR S n2

n224R2D if nÞ2R

~21!n11 if n52R.

SinceAÞ2, we observe that the quadratic energy grow
is unaffected by the length scale ratioR. Numerically we
have found that this behavior is also seen whent is a rational
multiple of 2p. Thus the quantum resonance phenomena
the well system is very similar to that of the kicked rot
@6,20#. It is to be noted that resonance is a nongeneric p
quantum phenomenon and no correspondence to it ca
seen in the classical system. In the context of a particle
well, quantum resonance may lead to enhanced ionizatio
a finite well.

IV. RESULTS

Having given a sufficient description of the system und
investigation, here we analyze the quasienergy states
quasienergies of the generic quantum system (t is an irratio-
nal multiple of 2p) in the relevant classical regimes. O
taking a truncatedN-dimensional Hilbert space spanned b
the firstN unperturbed basis states that belong to odd par
diagonalization of the matrixUmn gives the eigenstates$uc&%
such thatuc&5(ncnun&. We consider only states that ar
‘‘converged’’ in the sense that they are independent of
truncation sizeN. Thus the states we are interested in belo
to the infinite Hilbert space; they are states of the infin
cylinder andnot of a truncated cylinder, or torus. The la
distinction becomes important as quantum states that be
to the cylinder can have completely different localizati
features from those that belong to a truncated cylinder.
0-5
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SANKARANARAYANAN, LAKSHMINARAYAN, AND SHEOREY PHYSICAL REVIEW E 64 046210
we are interested in a particle in an infinite potential we
such a truncation lacks physical meaning.

A. Localization measures of eigenstates

Localization can be measured using a unified quantity,
Renyi participation ratiojq ,

jq5S (
n

ucnu2qD 1/(q21)

, ~21!

of which the entropy and participation ratio~PR! are special
cases. In our analysis we first use a normalized informa
entropy as a measure of the localization of states, and th
defined as

S5
21

ln~N/2! (
n51

N

ucnu2 lnucnu2. ~22!

It is easy to see thatS5 ln j1 /ln(N/2). This measure com
pares the entropy to that of the eigenfunctions ofN3N ma-
trices belonging to the Gaussian orthogonal ensemble~GOE!
which is approximately ln(N/2). The GOE is relevant to time
reversal symmetric systems such as we are considering

First we calculate a gross measure of localization in
given spectrum by averaging over all converged states.
set criteria for the states to be converged so that the s
belong to the cylinder, or are at least very close to states
belong to the cylinder. In all the following cases, the eige
values are converged in modulus to unity to within 0.0001
better. Figure 4 shows the average entropy as a function oR.
For smallK (<1), the oscillations are qualitatively simila
with distinct entropy minima at integerR and maxima at
around half-integerR. This may provide a simple mechanis

FIG. 4. Average entropy of 1000 eigenstates forK50.1,
t50.001 (s); K51, t50.01 (h); K510, t50.1 (d). N
51200 in all cases.
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for experimental control of the extent of localization. Th
information entropy is, of course, basis dependent; the
perturbed basis we use is a useful one as it has informa
about localization in the momentum.

Naturally, the minima in entropy are expected to ha
strong associations with the presence of stable regions in
classical phase space. Of special significance are KAM
in phase space, as these structures are complete barrie
classical diffusion in momentum. In spite of the fact that
the classical system all the KAM tori break up in the sta
dard map (R51) at K51, we observe a minimum entropy
This is due to the presence of cantori which are partial b
riers for chaotic orbits and suppress global diffusion. F
nonintegerR a complex phase space picture emerges,
has been discussed in@18#. Maximum entropy around half-
integerR is the classical parametric regime where the d
continuity is maximum, corresponding to maximum cha
assisted diffusion.

For largeK (510), oscillations in entropy are still presen
while there is apparently complete chaos for all relevanR
values. We can understand these oscillations as due to
strong correlation between the localization of eigenstates
classical diffusion coefficient. ForR,1/2 the semiclassica
parameterk5K/(8Rt) is large, yet there is increased loca
ization of states due to limited classical diffusion, presu
ably due to the presence of cantori. For the kicked rotor
exponential localization length was found to be proportio
to the classical diffusion coefficient@21#. This was found by
numerical experiments and is supported by certain qua
tive arguments. We are now in a position to examine
relationship between quantum localization and classical
fusion in the context of the particle in a well, wherein w
have the freedom of another control parameter, namelyR,
with which to vary the classical diffusion.

Instead of studying localization lengths we study he
measures of localization such as the entropy or the PR.
study the PR more closely than the entropy. In chaotic
gimes we have numerically ascertained that the expone
of the entropy is proportional to the PR, as shown in Fig.
The relationship between the localization length hitherto c
culated for the kicked rotor and the PR calculations
present will need more detailed study, but we expect them
be roughly proportional to each other. In fact, if we assum
fully exponentially localized state withucnu; exp(2un
2n0u/l`), then the PR is

j2
215S (

n
ucnu4D 21

52l ` . ~23!

We recapitulate the argument connecting classical di
sion and the localization length for the specific system
are considering, as there are differences in factors. Con
ering the time evolution of an initial state, kinetic energ
diffuses for a certain timetc and then attains quasiperiod
saturation. The numbernc of unperturbed states that are e
cited during the time evolution is related to the critical tim
by the diffusion equation

p2\2nc
25Dcltc , ^~pt2p0!2&5Dclt, ~24!
0-6
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whereDcl is the classical diffusion coefficient in momentu
and ^•••& represents the ensemble average. Here the
menta and the diffusion coefficient have dimensions and
have takena51/2. Since the critical time is the Heisenbe
time relevant fornc equally spaced eigenstates, we gettc
;ncT/2p. If the average localization lengtĥl `& is alsonc ,
we obtain the relation

^j2
21&52^ l `&5

ap

4t2 D~K,R!, ~25!

wheret is the dimensionless effective Planck constant
fined in Eq.~11! anda is a constant whose value has be
numerically determined as 1/2 for the standard map@22#.
D(K,R) is the dimensionless diffusion coefficient that o
will get from using the dimensionless maps Eq.~3! or Eq.
~5!. The dependence onboth K andR is emphasized.

In Fig. 6 we show the average PR and the scaled diffus
coefficient according to the relation Eq.~25!. We see that the
relation derived above holds in some parameter regi
while it picks up only qualitative features of the oscillatio
in others. In particular, the relation seems to hold forR
,1/2 when the classical system is hyperbolic as well
aroundR51. The deviations from the relation~25! might be
due to fluctuations of the state components in the unp
turbed basis~one such case is shown in Fig. 11 below!.
These fluctuations may lead to different scaling behavior
tween the average PR and the classical diffusion coeffici
However, more detailed investigations are needed to m
any positive statements. The sharp deviation forR52 can be
accounted for as due to the presence of an extra quan
symmetry discussed above.

FIG. 5. Average entropy vs the logarithm of the average
corresponding to the caseK510, t50.1 of Fig. 4. The slope of the
fitted straight line is 0.960.01.
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Following our study of the average PR and its scali
with the classical diffusion coefficient, we may then enqu
about how the PR itself is distributed in a given spectrum
the average reflects the general behavior. We find that w
the classical system is chaotic the distribution of the norm
ized quantityy5 ln j2

21/^ln j2
21& ~this is similar to the distri-

bution of the entropy due to the linear relationship exhibit
above! is nearly normal, as seen in Fig. 7. This may
attributed to a realization of the central limit theorem. Ho
ever the PRs and inverse participation ratios~IPRs! them-
selves are not normal. Their distributions may be obtained
assuming that the distribution ofy is normal. Thus the PRs
are distributed according to the log-normal distribution@23#

L~j2
21!5

1

A2ps^ ln j2
21&j2

21
expH 2

1

2s2 S ln j2
21

^ ln j2
21&

21D 2J
~26!

wheres2 is the variance ofy. As an immediate consequenc
the distribution of the IPRs is also log-normal. The distrib
tion of such localization measures is of great significan
Recently, the distribution of IPRs has been exploited to sh
that the distribution of resonance widths in wave-chaotic
electric cavities is log-normal@24#.

When K is small (<1), the classical motion is nearl
regular forR51, and chaotic forR<0.5. However, the time
scale for classical diffusion is large, making the observat
of R effects on quantum dynamics difficult. For instance, t
nearest neighbor spacing distribution may remain very cl
to the Poisson distribution. In such a situation we find th
the distribution of the PRs provides a positive litmus test.

FIG. 6. The average PR (d) and the scaled classical diffusio
coefficient (s) are plotted as functions ofR for the caseK510,
t50.1. The dotted line is the scaled coefficient calculated using
to the second order time correlation. Higher order time correlati
are insignificant since the classical system is highly chaotic.
0-7



e

e-
is
n

ding
hat
ive

the
e in
ffu-

ith

ld
u-

ger
or

are
as-

the
ical
e we

ore

SANKARANARAYANAN, LAKSHMINARAYAN, AND SHEOREY PHYSICAL REVIEW E 64 046210
Fig. 8 such an example is shown, where even for small fi
strengths the effect ofR is clearly visible as a tendency fory
to be normally distributed. This is an indication of the ‘‘d
localization’’ that is taking place in the eigenfunctions. Th
delocalization is limited in the sense that while the eige

FIG. 7. Probability distribution ofy, the normalized logarithm of
the PR, for the kicked rotor case (R51) in the chaotic regime. Here
we have takenK510 andt50.025 (3), t50.05 (s). Smooth
curves are corresponding Gaussian distributions.
04621
ld
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functions remain square integrable there is more sprea
out in the bulk part of the states. Thus we may conclude t
the distribution of the localization measures is a sensit
quantity in chaotic quantum systems.

The time evolution of nonstationary states must reflect
properties of the stationary states and is also of importanc
the context of experiments. Here we have studied the di
sion in kinetic energy of a stateuC& that is initially the
ground state of the unperturbed system. We illustrate w
one example wherein for a fixed classical parameterK the
effects of nonintegerR are seen clearly for a givent value.
Thus tuningR essentially tunesl sincea is fixed through the
relation ~11!. In Fig. 9 the scaled kinetic energŷP2&
5^CuP2uC& is shown as a function of time~number of kicks!
for a small value ofK corresponding to a small classical fie
strengthe. We note that while the quantum diffusion sat
rates at a much higher value forR51.5, compared toR51,
the actual classical field strengthe @from Eq. ~4!# is smaller
by a factor of 1.5. For comparison we show another inte
case,R52, where the classical diffusion is smaller than f
R51.

B. Eigenvalues and eigenstates

It is clear from our earlier observations that the states
more localized in the regular or mixed regimes of the cl
sical system and less localized~or delocalized! in the chaotic
regimes. The degree of localization is also controlled by
ratio of the length scales and the complexity of the class
phase space is reflected in the localization measures. Her
look at the quasienergies and the corresponding states m
closely.
e

-
si-
-

FIG. 8. Probability distribution ofy, the
normalized logarithm of the PR, for the cas
K50.1, t50.001 ~first row! and for K51,
t50.01 ~second row!. Smooth curves are corre
sponding Gaussian distributions. Note the sen
tivity of these distributions to the classical dy
namics.
0-8
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In Fig. 10 we show the nearest neighbor spacing distri
tion of the quasienergies for various parameters. The
row and the last column of the figure correspond to cla
cally chaotic regimes and the rest belong to regular/mi
phase space regimes. In regular/mixed regimes where
states are highly localized, the spacing shows excel
agreement with the Poisson distribution. On the other ha
in chaotic regimes the spacing agrees well with the Pois
distribution except at small spacings. This is due to the f
that the bulk part of the eigenstates is delocalized and t
overlap each other. However, the tail parts of the states
exponentially localized and the degree of overlap is not s
nificant enough. We also notice that the spacing distribut
is only slightly sensitive to the nature of the classical dyna
ics in the case of the unbounded kicked rotor or the well
least in the parameter regimes we have investigated. In s
situations, as we have demonstrated earlier, the distribu
of PRs is a good measure to distinguish chaotic quan
systems from regular systems.

Our extensive calculations of the eigenstates in cha
regimes show that, in general, it is hard to qualitatively d
ferentiate the states corresponding to nonintegerR values
from the rotor (R51) states as far as their localization b
havior is concerned. In particular, it is not easy to distingu
the emergence of nonexponential tails unequivocally. Ho
ever, we found that eigenstates corresponding to nonint
R values generally have more fluctuations compared to
rotor states; this is illustrated with some examples in Fig.
The fluctuations are closer to the random matrix the

FIG. 9. Shown is the scaled kinetic energy^P2& of a state that is
initially the ground state of the unperturbed system, as a functio
time. Here the parameters areK51, t50.01; R51 ~solid line!, R
51.5 ~dots!, andR52 ~dotted line!. The effect of nonintegerR is
clearly seen in the evolution as the kinetic energy of the quan
particle saturates at a much higher value compared to the integR
cases.
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~RMT! predictions in the case of nonintegerR values; this is
discussed further below.

Recently there have been studies of the special caseR
50.5) of the system~2!, with the motivation of revealing
quantal behavior of non-KAM systems@17#. It was observed
that the quasienergy states are ‘‘extended’’ in the unp
turbed basis and as a result the spacing was shown t
Wigner distributed. At this juncture we would like to com
pare our results with certain aspects of this work. In@17#, the
eigenstate shown in the highly chaotic regime (K550, N
51024; we have not been able to ascertain the value ot
used in this work! does not appear to belong to the un
bounded phase space as it spreads all over the basis. T
while states such as these may belong to some trunc
dynamical system, they do not belong to the infinite Hilb
space of the well system. Increasing the dimensionality
the matrix used will modify such states; in short, they are
converged. As we demonstrate below, unconverged
poorly converged states may mislead us in understanding
spectrum.

LargeK implies largek for givenR andt, and hence our
calculation demands bigger dimensionalityN of the trun-
cated Hilbert space, since the PR is roughly increasing ask2.
Although we takeN52000, getting a good number of con
verged states is problematic. We pursue the spacing distr
tion with a different convergence criterion for the states o
tained numerically. The convergence criterion uses
partial sum of the state components:

$Sum%M5 (
n51

M

ucnu2 with M,N. ~27!

of

m
r

FIG. 10. Nearest neighbor spacing distributions of 10
quasienergies for~a! K50.1, t50.001, ~b! K51, t50.01, ~c! K
510, t50.1, with R50.5,1,1.5 ~top to bottom! and N51200.
Smooth curves are Poisson distributions. Note the relative inse
tivity of these distributions to the classical dynamics.
0-9
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FIG. 11. Typical eigenstates for the caseK
510, t50.1. States corresponding toR50.5
have more fluctuations compared to the rot
(R51) states.
r-
the
For a well converged state we expect that$Sum%M'1,
even forM!N. We denote byNM the number of converged
eigenstates whose$Sum%M is greater thanSM ~an arbitrary
number close to, but less than, unity! for a fixed value
04621
of M. Thus the convergence criterion is characterized byM
andSM .

In Fig. 12, we show the spacing distributions with diffe
ent criteria for two cases. In both cases the transition to
ri-

s.
ve
FIG. 12. The nearest neighbor spacing dist
butions for the caseK550, t50.1. Smooth
curves are the Poisson and Wigner distribution
The convergence criterion is relaxed as we mo
from top to bottom. A ‘‘spectral transition’’ is
observed.
0-10
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FIG. 13. Typical well converged eigenstate
for the highly chaotic case:K550, t50.1, and
N52000.
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Wigner distribution is evident as the convergence criteria
relaxed. The unconverged or poorly converged states do
belong to the physical system of our interest and the co
sponding quasienergies follow the RMT prediction. Ob
ously, the result is more reliable in the top plots where
spacing shows neither a Poisson nor a Wigner distribut
Although the tail part shows Poisson behavior there are
nificant discrepancies in the small spacing. A more corr
picture may be closer to the scenario of the chaotic regim
presented in Fig. 10.

Shown in Fig. 13 are a few ‘‘well converged’’ states, wi
a more stringent convergence criterion (M51600,
SM50.9999). With this criterion we have onlyNM512 and
4 for R51 and 0.5, respectively. The state components
hibit strong fluctuations in the basis. Here again it is hard
differentiate the two cases qualitatively. The states co
sponding toR50.5 also appear to have exponential tails.
see the distribution of the state components, we introduc
variable hn5ucnu2/ucnu2 where the overbar stands for th
average over the state components such thath̄51. As seen
from Fig. 14, the cumulative distribution ofh for both cases
is very similar. Considerable deviations from the RMT pr
dicted cumulative Porter-Thomas distributionI (h)
5erf(Ah/2), may be attributed to the localization of th
states. However, the distribution corresponding toR50.5
tends to be closer to the RMT predicted behavior.

V. SUMMARY AND CONCLUSION

A particle inside a one-dimensional infinite square w
potential in the presence of a time-periodic pulsed field
04621
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examined both classically and quantum mechanically. T
simple model can be seen as one generalization of the kic
rotor, or the standard map. A variety of classical dynami
features emerge from the nature of the ratioR of the two
competing length scales~the well width and field wave-
length!. Many of the dynamical features so observed are

FIG. 14. Collective cumulative distribution of the componen
of the states shown in Fig. 13. Dotted curve corresponds toR51
while dashed curve corresponds toR50.5. Solid curve is the
cumulative Porter-Thomas distribution.
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neric to a wide class of systems of substantial current in
est, viz., externally forced particles in wells.

It is shown that when the length scales do not match, e
in perturbative regimes the dynamics can be increasin
complex wherein all the KAM tori in phase space break u
As a result the transition to chaos is abrupt, a typical scen
of non-KAM behavior. Quantum mechanically, the impri
of such a transition is seen as a spread in the bulk part~de-
localization! of the eigenstates. Thus we realize the len
scale ratioR as a control parameter for localization in th
weak field regime.

On increasing the field strength, chaos assisted diffus
takes place in momentum. From earlier studies of the kic
rotor it is known that the average localization length of t
eigenstates is directly proportional to the classical diffus
coefficient. We have shown that in our generalization of
kicked rotor also this result grossly explains the localizat
behavior of the eigenstates through the classical trans
properties. Thus the kicked rotor continues to serve as a
ful model in understanding physical phenomena exhibited
a larger class of systems.

We have observed, as expected, that in the regular
the nearest neighbor spacing distribution of the quasiener
show good agreement with the Poisson distribution. We h
presented evidence to support the suggestion that, in hi
chaotic regimes, the spacings show some deviations from
N.

.

.
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Poisson distribution although the corresponding eigenst
belong to an unbounded phase space. Limited overlap of
eigenstates results in such deviations. However, the spa
does not show the RMT predicted Wigner distribution as w
claimed in an earlier study@17#. The earlier result is attrib-
uted to lack of converged states in the statistics.

While the spacing is not very sensitive to classical cha
the distribution of participation ratios of the eigenstates
shown to be a good measure to distinguish chaotic quan
systems from regular ones. Quantum mechanically, cha
regimes are characterized by a log-normal distribution of
participation ratios. In addition to the above generic quant
features, we have also studied nongeneric phenomena
‘‘quantum resonance.’’ In the resonance condition, the
netic energy of the particle grows quadratically with increa
ing number of kicks. This unbounded energy growth is n
affected by the length scale ratio and can enhance ioniza
in the finite well system.

As far as experimental realization of this work is co
cerned, perhaps both quantum wells@3# and cold atom ex-
periments@15# are possible candidates. As suggested abo
the R effects may be best observed at small field streng
and forR.1. Further work is underway exploring the natu
of localization in such systems, including a bounded vers
of the generalized standard map.
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