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Quantum chaos of a particle in a square well: Competing length scales and dynamical localization
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The classical and quantum dynamics of a particle trapped in a one-dimensional infinite square well with a
time-periodic pulsed field is investigated. This is a two-parameter non-KKMmogorov-Arnold-Moser
generalization of the kicked rotor, which can be seen as the standard map of particles subjected to both smooth
and hard potentials. The virtue of the generalization lies in the introduction of an extra par&netech is
the ratio of two length scales, namely, the well width and the field wavelengtR.i$f a noninteger the
dynamics is discontinuous and non-KAM. We have explored the rolR af controlling the localization
properties of the eigenstates. In particular, the connection between classical diffusion and localization is found
to generalize reasonably well. In unbounded chaotic systems such as these, while the nearest neighbor spacing
distribution of the eigenvalues is less sensitive to the nature of the classical dynamics, the distribution of
participation ratios of the eigenstates proves to be a sensitive measure; in the chaotic regimes the latter is
log-normal. We find that the tails of the well converged localized states are exponentially localized despite the
discontinuous dynamics while the bulk part shows fluctuations that tend to be closer to random matrix theory
predictions. Time evolving states show consider&tependence, and tunifito enhance classical diffusion
can lead to significantly larger quantum diffusion for the same field strengths, an effect that is potentially
observable in present day experiments.
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[. INTRODUCTION whereV(6) is an external potential that is periodic with pe-
riod 27, andf(t) is a periodic function of time with period
For several years now studies on quantized chaotic sysF. A lengthening pendulum, for instance, may be the system
tems have increased significantly with the object of revealinginder study. V() is sufficiently smooth, the KAM theo-
qguantum mechanical manifestations of classical cl&g. rem scenario combined with the Poinc@iekhoff theorem
The bulk of the work has used smooth Hamiltonian systemsprovides the generic behavior. The smoothness or at least
If we start perturbing an integrable system, classical Hamilcontinuity of V() is provided by the periodic boundary con-
tonian chaos may develop through a gradual destruction ditions in the angular position of the rotor. Introducing dis-
invariants. The celebrated Kolmogorov-Arnold-Moser continuous potentials will lead té function forces equiva-
(KAM) theorem gives conditions as to when a given torudent to walls of certain heights.
will be only distorted. This scenario has been widely studied This brings us to a natural class of systems where non-
in two-degree-of-freedom systems or two-dimensional are&AM behavior will be the rule rather than the exception:
preserving maps. However, there are conditions upon whickxternally forced particles in wells. This forms a broad class
the KAM theorem rests that may not always be satisfied byf systems that have evoked considerable interest and re-
certain systems of physical interest. In particular, if the persearch since the development of quantum wells and dots.
turbation is not sufficiently smooth or even discontinuous theOne of the experiments where quantum “scarring” of wave
KAM scenario may break down. Large scale chaos may infunctions was reported involved resonant tunneling of a par-
stantaneously develop in the system. One other way that théle across a well in which there were external electromag-
KAM scenario fails is when the unperturbed system is fully netic fields[3].
resonant, as in the Kepler problem. We deal in this paper In fact the simplest of such systems involve a particle in
with the former kind of non-KAM behavior. one-dimensional infinite square welldD billiards) with
We first discuss the prevalence of systems where suctime-dependent external fields. Consider as an example the
effects may be seen. The simplest systems where HamiHamiltonian
tonian chaos can develop are the so called

1.5-degree-of-freedom system, which are time-dependent H=Hy+ e cog wt)cog2mx/\), 1)
one-degree-of-freedom systems. Thus we consider the rotor
Hamiltonian whereH0=p2/2+VSq(x;a), describing such a particle. The

potential Vs4(x;a) is the confining infinite square well po-
tential of width 2a, centered at the origin. Hereand\ are
the field strength and wavelength of the external field which
is being modulated in time with frequenay.

It is easy to verify that the equations of motion are invari-

p2
H= ?0+f(t)V(¢9),
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. FIG. 2. Shown are orbits of Fig. 1 having identical initial con-

FIG. 1. Typical phase space of the system governed by thjisions. The initial condition corresponds to a KAM torus in the
Har_mltqnl_an (1) W'th E_O‘Oc_)l andw=1. The lower momentum lower momentum region foR=1 (the negative momentum region
region is increasingly chaotic when the length scales do not ma'[ci]S not shown hene Note the abrupt change in stability and the

and nongeneric features of the resultant phase space structures.
kicked systemdg4]. The reasons are evident: they are the
e—el(2awg)®, A—\2a, w—olwg. simplest Hamiltonian systems where many generic features
of chaotic complex systems may be observed; and they allow
Here the frequency,, which sets the new time scale, is a partial integration of the equations of motion, from kick-
arbitrary. Note that the new scaled variables and parametets-kick, enabling us to study iterative “mappings” rather
are referred to by the old symbols and they are dimensionthan differential equations. Quantum mechanically the sim-
less. Settingwo=w in the above transformation, we have plification enables us to partially integrate the Schinger
effectively two parameterss and R=2a/\. HereR is the  equation and write the kick-to-kick propagator, or Floguet
ratio of the two length scales of the system, i.e., the welloperator, analytically5].
width and field wavelength. The presence of two competing An important paradigm in this class is tléekicked rotor
length scales provides a rich range of non-KAM behaviorsfrom which is derived the standard mgg7]. The dynamical
In particular, if the dimensionless ratiR is a noninteger richness of the classical system that obeys the KAM theorem
there is the possibility of observing non-KAM phenomena. and the consequent smooth transition to chaos are now well
Under the perturbation we can expect roughly that stateknown and fairly well understoo@—10]. The corresponding
whose absolute value of the initial momentum is less thamuantum system has also been studied quite extensively as a
\/m will be most affected. Thus low energy states will be model of “quantum chaos’{see[11] for an early review of
most affected by the time-dependent forces. Figure 1 showthis), and continues to provide an excellent model to numeri-
the effect of the paramet&. While for R=1 the system is cally test our understanding of such systdri2].
essentially KAM and has KAM tori interspersed with reso-  The periodic input of energy into the system through the
nances, any small deviation & away from unity destroys kicks can result in a diffusive increase of the momentum, and
low energy KAM curves and leads to increased chaos. Figurstrong kicking strength can lead to unbounded energy growth
2 shows the fate of an individual KAM torus for whidR  classically. However, an important result of quantization is
=1 is a “bifurcation” point in parameter space and which that the eigenfunctiongquasienergy statesare generically
changes stability on either side. We expect such behavior texponentially localized in momentum spaaghich sup-
be generic to a large class of similar systems and in thipresses the momentum diffusion even in the highly chaotic
paper we will exhaustively study a “standard map” versionregime. A plausible mechanism for this “dynamical localiza-
of these systems. Just as the standard map provides an almn” was suggested when an analogy was fojd@] to
stract view of behavior around nonlinear resonances, we eXAnderson type localization of electrons in random on-site
pect our model’s analysis to provide such a view for thesepotential[14]. Experimental realizations of th&kicked ro-
systems. tor, with cold atoms in pulsed standing laser fidl#lS], have
Many models have been studied where the time deperconfirmed the quantum suppression of diffusion. The local-
dencef(t) is a train of Diracé functions, the periodically ized states in unbounded momentum space result in quasi-
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independence of the quasienergies, and the random matri
properties[16,1] expected of quantized chaotic systems are
not seen. For instance, the nearest neighbor spacing distribt
tion is Poisson rather than Wigner and the eigenfunction
components are not Gaussian distributed. It must be state
that most of these results are numerical and larger matrix
calculations that are “more semiclassical” may show spec-
tral transitions as the bulk of the eigenfunctions spread out
and overlap with each other while the tails are still exponen-
tially localized. Some evidence of this will also be presented
in this paper. P 0
Following our motivational discussion above, we replace
the time dependence by a seriesdfunctions to facilitate
the derivation of a map in which we can study non-KAM
behavior of the kind suggested above. Recently study of suct
systems has begyi7,1§. For instance, in17] it is shown
that the quantum states are extended and delocalized in th
highly chaotic(strong field regime. In turn, the spacing of
the quasienergies, unlike in the kicked rotor, follows the
Wigner distribution. It is argued that the extended states dc_
overlap and hence the corresponding quasienergies are ni = ~0.5
independent, resulting in level repulsion. Part of the present X
paper also critically examines these results[18] a classi- FIG. 3. Phase space portrait of the GSM with=0.3. ForR
cal analysis of a generalized system was carried out t0 Un= he dynamics is nearly regular wherein many smooth KAM
derstand the changes of stability that occur as a functid® of torj are seen. WheR departs from unity the dynamics is increas-
and some of these results will be summarized below. ingly complex and no KAM tori are seen. This may be compared to
the lower momentum region in Fig. 1.

Il. CLASSICAL SYSTEM

. . L ._qualify as a “standard” map for such non-KAM systems. In
The system of interest is a part'lcle |n§|de the' pqtenha act there is a close relationship between this “well mdgy

Vsq(xa) in the_presence of_a p_artlcu_lar time-periodic im- and the standard map itself that allows us to study it as a

pulse. We consider the Hamiltonian given by generalized standard maiiSM) [18]. This is the map

H=Ho+ecog2mx/\) 2> S(n—t/T). ) Pni1=Pn+(K/2m)sin27RX,), .
N 5

Xns1=Xq+ P 1
The kick-to-kick dynamics of the particle immediately after n+1=XntPney (mod 1),

gach pulsg can be desgribed by an area preserving map Whimich is defined on a cylinder—(e,) X[ — 1/2,1/2). The
in dimensionless form is well map and the GSM differ only in boundary conditions,

X\ 1=(—1)Bf(X +P)—sgP.)B,, i.e., the former and latter have reflective and periodic bound-
nt1= (= 17X+ Po) = SQM(Pp) B} 3 A conditions, respectively. It is easy to see that this does
Po.1=(—1)BP, + (K/2m)sin(27R X+ 1). not play any effective role, in the sense that the trajectories

as evolved under the two systems can at most differ by a
Here B,=[sgn(P,)(X,+P,)+1/2] is the number of sign, depending on the number of bounces undergone. This
bounces of the particle between the walls during the intervalact considerably simplifies our analysis of the well map.
between theth and (1+1)th kick, and[ - - - ] stands for the WhenR=1, the GSM is the well studied and fairly well
integer part of the argument. The state of the particle justinderstood standard map of thekicked rotor.
after thenth kick is now given in the new variables as  The dynamics of the GSM is highly chaotic and diffusive
X,,P,. The sign of the momentum=(1) is given by in the strong field regimeK>1). In addition, it exhibits
sgn(P,). The following scaling relations are used to redefineother interesting features like the development of chaos and

the variables and parameters: hence diffusion even in the weak field regim€<1) when
R#] wherej is a positive integefsee Fig. 3. Note that the

Xn pnT 2em’T? 2a phase space portraits of both the well map and the GSM are

Xn=5q Pn=og K=—4— R= 4 same. Such dynamical features are in fact common in non-

KAM systems, and one such situation is shown earlier. We
We note that X,|<1/2 and effective parameters of the can understand the development of chaos at low field
particle dynamics ark, the field strength, anR, the ratio of  strengths from the observation that the otherwise continuous
the two length scales. The map (8) shows the principal map is discontinuous wheR+ j. The KAM theorem does
features that we discussed earlier in the Introduction and magot hold for the discontinuous case and no smooth KAM tori

046210-3



SANKARANARAYANAN, LAKSHMINARAYAN, AND SHEOREY PHYSICAL REVIEW E 64 046210

exist in the phase space, however snialmay be. In the Umn={(m|U|n)
absence of KAM tori, the phase space is chaotic and diffu- - .
sive even in the weak field regime. Moreover, whBn =(m|exp[—ik cog2mx/\)}|n)e " =F e "7,

<1/2 the GSM is a hyperbolic system. For a more detailed

investigation of the GSM we refer the reader 18]. (10

where we have defined an effective Planck constant as
11l. QUANTUM MECHANICS OF THE TRAPPED

2
PARTICLE __mhT (11)
-
For a Hamiltonian that is periodic in time with peridd 8a
(=27l w), solutions of the Schdinger equation satisfy the As the external field preserves parity we have
eigenvalue equatiofil9]
0 if m+n is odd

Ulyp)=e""""y;), ®  Fo=1 1 ) , ,
ﬂ{Q(m—n)/z—(— D"Q(msnyzt  If m+niseven,
whereU is the one-period time evolution operator. Hefe) (12
anda; are the quasienergy, states and quasienergies, respec-
tively. It is to be noted that the inner product of two arbitrary where
solutions of the Schidinger equation for an arbitrary time- -
deper)t_je_nt Hamiltonian is ?ndependent of time due to _the Q':f cog | §)ekeosRo)gg (13)
Hermiticity of the Hamiltonian. As a consequence of this, w
states corresponding te; and «; such thate;—a;#nfio _ o
(wheren is an integer are orthogonal at a given time. &  @nd#=mx/a. We note thaQ, is a Bessel function integral
— a;=nho, the states are degenerate and hence the quasiefr‘?-r integerR, while for nonintegeR the integral constitutes
ergies are uniquely defined modutas. From the set of all & kind of “incomplete” Bessel function. Invoking the Bessel
orthogonal states we may write the general solution at dnctionJs(k) through the identity
given time agW¥)=Z3;c;|¢;). w

efik cos6 _ 2 (_i)s\]s(k)efisﬁ

S=—w

A. Matrix representation of U

Periodically kicked systems are particularly easy to studythe integral can be evaluated as a series:
sinceU can be written immediately by integrating the Schro

dinger equation between successive kicks. For the Hamil- . - s
tonianH in Eq. (2) we have Qi=2mJo(k) 8,0 2;::1 (=D34(k)Cs, (14

U= exp{ —ik cos( z)\ix) ] ex;{ —i g] , (7) where

wherek= eT/%. Note that the above time evolution operator
is the quantum counterpart of the well map and not that of | .
the GSM. The eigensystem in E¢6) may be solved by (—1)2sRsin(sRm) for sR# ||
diagonalizing a matrix representation &f. The natural = (sR?2—12

choice of basis for théJ matrix is the eigenstates of the
unperturbed Hamiltoniaf o

Cs= jjr cogl#)cogsRA)da

T for sR=|l|.

The relationd_ (k) = (—1)%J4(k) has been used in E¢L4).

Holn)=Eq|n), (8 Note that ifR is an integer Eq(14) simplifies to
wheren=1,2,3 ... . Theenergy eigenfunctions and eigen- - _
values are 3 el g QIZZ'”'SE0 (—1)%g(k) 5\I\,5R (15
1 N and a single term is picked out of the infinite series.
TCOS( >a ) for n odd, ) 2s The forms ofQ, allow us to assess the fall of the matrix
(x|ny= a E _nm fi ) elements of the unitary matrid. For integerR the unitary
1 g " ga? matrix can be essentially banded as the matrix elements fall
—=sin —) for n even, off exponentially after a certain cutoff. F&t=1, as is well
Va 2a known and can be seen from above fork the matrix ele-
ments fall off exponentially, wherke measures the distance
The unitary matrixU is then calculated as from the diagonal. On the other hand whigris not an inte-

046210-4



QUANTUM CHAOS OF A PARTICLE IN A SQUAFRE . .. PHYSICAL REVIEW E 64 046210

ger, apart from the Bessel function terms there are terms thaerturbed motion between the kicks is absent. In this case,
are decreasing only polynomially ih For instance, when without loss of generality, the time evolution of an arbitrary
R=1/2 we have state of the system is

Q=2m(—1)"Jy(k)+(-1)'8 W (1)) = e~ oM p(0)) (18)

o]

—i)Sssi 12
y 2 (—1)%ssin(sw/2)
s=1.35,... s2— 42

and thug W (t)|?=|¥(0)|%. Note that her¢ is the number of
J(K). (16)  Kkicks. The kinetic energy of the particle is then

—h2%([Awkt\ fa (27X
o . . . E()=E(0)+ —&—1 | —— f sinl —
The infinite series gets effectively cut off fer-k. The finite 2 A -a A

sum has terms that only decay Bs’>. Thus nonintegeR

values imply an important characteristic of the unitary quan- % Re( i (0)‘9?(0)) dx

tum map: the polynomial fall of matrix elements, as opposed IX

to the exponential fall characterizing integer In fact, we orkt\2 ra 2

may speculate whether non-KAM systems aleayschar- _(_) f |\P(O)|23in2(—)dx}. (19)
acterized by polynomially decaying matrix elements in the A -a A

unperturbed basis. According to earlier studies eigenfunction o ] )
localization crucially depends on the way in which matrix ' the limit t—cc the energy grows quadratically with the
elements decrease. number of kicks. Iff ¥'(0))=|n), i.e., the initial states is one
WhenR=1, the classical equivalence of the kicked rotor Of the unperturbed states itself, the energy is purely qua-
to the particle in a well was noted above. It is easy to see thafratic. In fact, the energy can be found exactly as
the equivalence persists quantum mechanically also. The
parity symmetry reduced rotor unitary matrix is identical to E(t)=E(0)
the well unitary operator in this case and hence odd states of
the rotor correspond to odd states of the well, while the even re
states have a similar relationship. Thus all that is known for
the quantum standard map, including exponential localiza- sin(27R) n2
tion of eigenstates, may be carried over to the well system (n2—4R2
with R=1. This allows us to address interesting questions of
deviations from the standard map in a single model. (—pn*t if n=2R.
The perturbing potential cost&/\) preserves the parity i )
of Ho, and henceJ has symmetry of parity. In what follows SinceA# 2, we observe that the quadratic energy growth
we consider only the states that have odd parity. In addition’S Unaffected by the length scale rafi® Numerically we

the system has spatial translational symmetry wRea an have found that this behavior is also seen whésa rational
integer. Let us define a transformation for inteeas multiple of 2. Thus the guantum resonance ph.enomena of
the well system is very similar to that of the kicked rotor

[6,20]. It is to be noted that resonance is a nongeneric pure
quantum phenomenon and no correspondence to it can be
seen in the classical system. In the context of a particle in a

such that 7Rf(X)=f(X). 7 has the eigenvaluesB,  well, quantum resonance may lead to enhanced ionization in
= exp(2l7/R), wherel=0,1,2 ...,(R—1). The commuta- 3 finite well.

tion relation[U,7]=0 leading to7|¢)= 8| ). ForR=2,

1+

ktR)?
T) (Z—A)], (20)

R ) if n#2R
A: 7T

THX)=f(X+1/R) mod 1) (17)

B1==1; in this case we consider only the states that corre- IV. RESULTS
spond toB,=1.
The dimensionless quantum parametkerand 7 are re- Having given a sufficient description of the system under

lated to the classical parameters through the reladR  investigation, here we analyze the quasienergy states and
=8kr. The semiclassical limit ik— and7—0, such that ~quasienergies of the generic quantum systeris @n irratio-
k7 is fixed. Any arbitrary state of the system at a given timenal multiple of 2r) in the relevant classical regimes. On

is [W(1))==,A,(t)|n) and its time evolution is given by taking a truncatedN-dimensional Hilbert space spanned by
AL t+T)==,UnALD. the firstN unperturbed basis states that belong to odd parity,

diagonalization of the matrii ., gives the eigenstatesy)}
such that| )= ,¢,/n). We consider only states that are
“converged” in the sense that they are independent of the
Here we investigate if the parameterhas any effect on truncation sizeN. Thus the states we are interested in belong
the important phenomenon of “quantum resonance.” Weto the infinite Hilbert space; they are states of the infinite
notice that the unperturbed motion of the particle, given bycylinder andnot of a truncated cylinder, or torus. The last
the HamiltoniarHy, between the kicks simply adds phase todistinction becomes important as quantum states that belong
the wave function componentwhen expressed in the unper- to the cylinder can have completely different localization
turbed basis, as in Eq10)]. At resonance {=2), the un-  features from those that belong to a truncated cylinder. As

B. Quantum resonance
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T T rr, T for experimental control of the extent of localization. The
N information entropy is, of course, basis dependent; the un-
perturbed basis we use is a useful one as it has information
about localization in the momentum.

Naturally, the minima in entropy are expected to have
strong associations with the presence of stable regions in the
classical phase space. Of special significance are KAM tori
in phase space, as these structures are complete barriers to
classical diffusion in momentum. In spite of the fact that in
the classical system all the KAM tori break up in the stan-
dard map R=1) atK=1, we observe a minimum entropy.
This is due to the presence of cantori which are partial bar-
riers for chaotic orbits and suppress global diffusion. For
nonintegerR a complex phase space picture emerges, and
has been discussed [i&i8]. Maximum entropy around half-
integerR is the classical parametric regime where the dis-
continuity is maximum, corresponding to maximum chaos
assisted diffusion.

T I BRI R For largeK (=10), oscillations in entropy are still present
0 0.5 1 1.5 2 while there is apparently complete chaos for all relevant
R values. We can understand these oscillations as due to the

FIG. 4. Average entropy of 1000 eigenstates 16r0.1, strong corr_elati_on betwe_e_n the localization of eige_:nstat_es and
7=0.001 ©); K=1,7=0.01 (0); K=10,r=0.1 (®). N Classical diffusion coefficient. FdR<1/2 the semiclassical
=1200 in all cases. parametek=K/(8R7) is large, yet there is increased local-

ization of states due to limited classical diffusion, presum-
we are interested in a particle in an infinite potential well,@bly due to the presence of cantori. For the kicked rotor the
such a truncation lacks physical meaning. exponential localization length was found to be proportional
to the classical diffusion coefficief21]. This was found by
numerical experiments and is supported by certain qualita-
tive arguments. We are now in a position to examine the

Localization can be measured using a unified quantity, theelationship between quantum localization and classical dif-
Renyi participation rati&, fusion in the context of the particle in a well, wherein we

have the freedom of another control parameter, nanily,
DAL (21)  Wwith which to vary the classical diffusion.

n Instead of studying localization lengths we study here
measures of localization such as the entropy or the PR. We

of which the entropy and participation ratiBR) are special  study the PR more closely than the entropy. In chaotic re-
cases. In our analysis we first use a normalized informatiogimes we have numerically ascertained that the exponential
entropy as a measure of the localization of states, and this 5 the entropy is proportional to the PR, as shown in Fig. 5.
defined as The relationship between the localization length hitherto cal-
N culated for the kicked rotor and the PR calculations we

o -1 2 2] 2 29 present will need more detailed study, but we expect them to
"~ In(N/2) &4 Yl Inf . (22) be roughly proportional to each other. In fact, if we assume a

fully exponentially localized state with|,|~ exp(—|n

It is easy to see thaB= In & /In(N/2). This measure com- —Nol/l), then the PR is

pares the entropy to that of the eigenfunctiondNof N ma- 1

trices belonging to the Gaussian orthogonal enseh@E) &l= ( E |y |4) —2l... (23)
which is approximately I{/2). The GOE is relevant to time 2 noon

reversal symmetric systems such as we are considering.

First we calculate a gross measure of localization in a We recapitulate the argument connecting classical diffu-
given spectrum by averaging over all converged states. Waion and the localization length for the specific system we
set criteria for the states to be converged so that the staté@€ considering, as there are differences in factors. Consid-
belong to the cylinder, or are at least very close to states th&ring the time evolution of an initial state, kinetic energy
belong to the cylinder. In all the following cases, the eigen-diffuses for a certain time, and then attains quasiperiodic
values are converged in modulus to unity to within 0.0001 orsaturation. The number, of unperturbed states that are ex-
better. Figure 4 shows the average entropy as a functién of cited during the time evolution is related to the critical time
For smallK (<1), the oscillations are qualitatively similar by the diffusion equation
with distinct entropy minima at integeR and maxima at o2 5
around half-integeR. This may provide a simple mechanism 7 hNe=Dgte, ((Pt—Po)?)=Dat, (24)

0.7

0.6

(S)

0.5

0.4

A. Localization measures of eigenstates

gq:

) 1(a-1)
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FIG. 5. Average entropy vs the logarithm of the average PR FIG. 6. The average PR®) and the scaled classical diffusion
corresponding to the case= 10, 7=0.1 of Fig. 4. The slope of the coefficient (O) are plotted as functions d® for the caseK =10,
fitted straight line is 0.2 0.01. 7=0.1. The dotted line is the scaled coefficient calculated using up

to the second order time correlation. Higher order time correlations

whereDy, is the classical diffusion coefficient in momentum are insignificant since the classical system is highly chaotic.

and(---) represents the ensemble average. Here the mo- ) ] ]
menta and the diffusion coefficient have dimensions and we Following our study of the average PR and its scaling
have takera=1/2. Since the critical time is the Heisenberg with the classical diffusion coefficient, we may then enquire

time relevant forn. equally spaced eigenstates, we get about how the PR itself is distributed in a given spectrum if
~n.T/2m. If the avcerage localization length..) is :allsonc, the average reflects the general behavior. We find that when

we obtain the relation the classical system is chaotic the distribution of the normal-
ized quantityy= In & /(In &) (this is similar to the distri-
bution of the entropy due to the linear relationship exhibited
above is nearly normal, as seen in Fig. 7. This may be
attributed to a realization of the central limit theorem. How-
ever the PRs and inverse participation rat{tRRs them-

, ) ) ) selves are not normal. Their distributions may be obtained by
where 7 is the dimensionless effective Planck constant de'assuming that the distribution gfis normal. Thus the PRs

fined in Eq.(11) anda is a constant whose value has beenge gistributed according to the log-normal distributjas]
numerically determined as 1/2 for the standard rh2p|.

(&)=2(1.)=72D(KR), (29

D(K,R) is the dimensionless diffusion coefficient that one 1 Inet 2
will get from using the dimensionle;s maps &fa) or Eq. A(§§1)= expl — = i_l
(5). The dependence dmth K andR is emphasized. V2ro(ing; et 207\ (In&, Y

In Fig. 6 we show the average PR and the scaled diffusion (26)

coefficient according to the relation E@5). We see that the

relation derived above holds in some parameter regions/hereo? is the variance of. As an immediate consequence,
while it picks up only qualitative features of the oscillations the distribution of the IPRs is also log-normal. The distribu-
in others. In particular, the relation seems to hold Rr tion of such localization measures is of great significance.
<1/2 when the classical system is hyperbolic as well aRecently, the distribution of IPRs has been exploited to show
aroundR= 1. The deviations from the relatiq25) might be  that the distribution of resonance widths in wave-chaotic di-
due to fluctuations of the state components in the unperelectric cavities is log-normdR4].

turbed basis(one such case is shown in Fig. 11 beJow When K is small (<1), the classical motion is nearly
These fluctuations may lead to different scaling behavior beregular forR=1, and chaotic foR<0.5. However, the time
tween the average PR and the classical diffusion coefficienscale for classical diffusion is large, making the observation
However, more detailed investigations are needed to makef R effects on quantum dynamics difficult. For instance, the
any positive statements. The sharp deviationRer2 can be  nearest neighbor spacing distribution may remain very close
accounted for as due to the presence of an extra quantuto the Poisson distribution. In such a situation we find that
symmetry discussed above. the distribution of the PRs provides a positive litmus test. In
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6 — . . functions remain square integrable there is more spreading
out in the bulk part of the states. Thus we may conclude that
the distribution of the localization measures is a sensitive
quantity in chaotic quantum systems.

The time evolution of nonstationary states must reflect the
properties of the stationary states and is also of importance in
the context of experiments. Here we have studied the diffu-
sion in kinetic energy of a statgl) that is initially the
ground state of the unperturbed system. We illustrate with
one example wherein for a fixed classical paramé&teghe
effects of nonintegeR are seen clearly for a givenvalue.
Thus tuningR essentially tuneks sincea is fixed through the
relation (11). In Fig. 9 the scaled kinetic energ{P?)
=(¥|PJ¥) is shown as a function of tim@umber of kick$
for a small value oK corresponding to a small classical field
strengthe. We note that while the quantum diffusion satu-
rates at a much higher value fBr=1.5, compared tiR=1,
the actual classical field strengénfrom Eq. (4)] is smaller
by a factor of 1.5. For comparison we show another integer
case,R=2, where the classical diffusion is smaller than for
R=1.

P(y)

FIG. 7. Probability distribution of, the normalized logarithm of ) )
the PR, for the kicked rotor cas®€ 1) in the chaotic regime. Here B. Eigenvalues and eigenstates

we have takerK =10 and7=0.025 (x), 7=0.05 (O). Smooth It is clear from our earlier observations that the states are
curves are corresponding Gaussian distributions. more localized in the regular or mixed regimes of the clas-
sical system and less localizéat delocalizedlin the chaotic

Fig. 8 such an example is shown, where even for small fieldegimes. The degree of localization is also controlled by the
strengths the effect dR is clearly visible as a tendency fgr  ratio of the length scales and the complexity of the classical
to be normally distributed. This is an indication of the “de- phase space is reflected in the localization measures. Here we
localization” that is taking place in the eigenfunctions. Thislook at the quasienergies and the corresponding states more
delocalization is limited in the sense that while the eigen-closely.

i ° 3
- R=1 r
6 i
I 5[
4~ o i
2 - o ° ! -
- (o] B
o) -
/M i
0 Bon0 " o(1 00 » FIG. 8. Probability distribution ofy, the
Cocb b bl b O L L L normalized logarithm of the PR, for the case
06 08 1 12 14 16 06 0.8 1 1.2 14 K=0.1,7=0.001 (first row) and for K=1,
- = 7=0.01 (second roy. Smooth curves are corre-
4 - ° R=1 C ° R=05 sponding Gaussian distributions. Note the sensi-
C o q [ R ’ tivity of these distributions to the classical dy-
3 C o namics.
B ° o °o L
= r 00 © 2
Ter r
r o C
1 E
L = o
- (o) (o)
L o .
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0.8 1 1.2 06 0.8 1 12 14
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FIG. 9. Shown is the scaled kinetic enexdd?) of a state that is

initially the ground state of the unperturbed system, as a function of FIG. 10. Nearest neighbor spacing distributions of 1000
time. Here the parameters afe=1, 7=0.01; R=1 (solid ling), R quasienergies fofa) K=0.1, 7=0.001, (b) K=1, 7=0.01, (¢) K
=1.5(dotg, andR=2 (dotted ling. The effect of nonintegeRr is =10, 7=0.1, with R=0.5,1,1.5 (top to bottom and N=1200.
clearly seen in the evolution as the kinetic energy of the quantun8mooth curves are Poisson distributions. Note the relative insensi-
particle saturates at a much higher value compared to the ineger tivity of these distributions to the classical dynamics.
cases.

(RMT) predictions in the case of nonintegewvalues; this is

. . . . ... discussed further below.
In Fig. 10 we show the nearest neighbor spacing distribu- Recently there have been studies of the special cBse (

tion of the quasienergies for various parameters. The first. 0.5) of the systen(2), with the motivation of revealing

row and thg Iast.column of the figure correspond to Cl?SSi' uantal behavior of non-KAM systemi$7]. It was observed
cally chaotic regimes and the rest belong tq regular/mixe hat the quasienergy states are “extended” in the unper-
phase space regimes. In regular/mixed regimes where g heq pasis and as a result the spacing was shown to be
states are highly localized, the spacing shows excellenjyigner distributed. At this juncture we would like to com-
agreement with the Poisson distribution. On the other handyare our results with certain aspects of this work/1if], the
in chaotic regimes the spacing agrees well with the PoissoBjgenstate shown in the highly chaotic regimé=(50, N
distribution except at small spacings. This is due to the fact 1024: we have not been able to ascertain the value of
that the bulk part of the eigenstates is delocalized and theysed in this work does not appear to belong to the un-
overlap each other. However, the tail parts of the states angounded phase space as it spreads all over the basis. Thus,
exponentially localized and the degree of overlap is not sigwhile states such as these may belong to some truncated
nificant enough. We also notice that the spacing distributiordynamical system, they do not belong to the infinite Hilbert
is only slightly sensitive to the nature of the classical dynam-space of the well system. Increasing the dimensionality of
ics in the case of the unbounded kicked rotor or the well, athe matrix used will modify such states; in short, they are not
least in the parameter regimes we have investigated. In sugtonverged. As we demonstrate below, unconverged or
situations, as we have demonstrated earlier, the distributiopoorly converged states may mislead us in understanding the
of PRs is a good measure to distinguish chaotic quantur§Péctrum. _
systems from regular systems. LargeK implies Iarge!< for givenR gnd 7, and hence our
Our extensive calculations of the eigenstates in chaoti€@lculation demands bigger dimensionallty of the trun-
regimes show that, in general, it is hard to qualitatively dif-cated Hilbert space, since the PR is roughly increasirif as
ferentiate the states corresponding to noninteRevalues ~ Although we takeN=2000, getting a good number of con-
from the rotor R=1) states as far as their localization be- Verged states is problematic. We pursue the spacing distribu-
havior is concerned. In particular, it is not easy to distinguishion with a different convergence criterion for the states ob-
the emergence of nonexponential tails unequivocally. Howiaineéd numerically. The convergence criterion uses the
ever, we found that eigenstates corresponding to noninteg®@rtial sum of the state components:

R values generally have more fluctuations compared to the M
rotor states; this is illustrated with some examples in Fig. 11. S _ 2\

" . u = with M <N. 2
The fluctuations are closer to the random matrix theory {Suntu nzl [l @7
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10
20
:‘ 1 Il 1 1 1 1 1 1 Il 1 1 1
-10 —
20 FIG. 11. Typical eigenstates for the cake
P L L =10, 7=0.1. States corresponding tR=0.5
L have more fluctuations compared to the rotor
a0 [ (R=1) states.
20 |-
‘ 1 Il 1 1 1 1 1 1 L 1 1 1
= n S5 10
gL g
. -20
H El
0 100 200 300 0 100 200 300
n n

For a well converged state we expect th&unt},,~1, of M. Thus the convergence criterion is characterizedvby
even forM<N. We denote byN,, the number of converged andSy, .
eigenstates whosgSum}, is greater tharBy (an arbitrary In Fig. 12, we show the spacing distributions with differ-
number close to, but less than, unitfor a fixed value ent criteria for two cases. In both cases the transition to the

)]

FIG. 12. The nearest neighbor spacing distri-
butions for the caseK=50,r=0.1. Smooth
curves are the Poisson and Wigner distributions.
The convergence criterion is relaxed as we move
from top to bottom. A “spectral transition” is
observed.
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R =1 R =05
o 10 [
20 [ r
L 20 T
Ll L L L = | L
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[ , L , H L . . FIG. 13. Typical well converged eigenstates
r i for the highly chaotic caseK =50, 7=0.1, and
o H H N=2000.
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Wigner distribution is evident as the convergence criteria iexamined both classically and quantum mechanically. This
relaxed. The unconverged or poorly converged states do nsimple model can be seen as one generalization of the kicked
belong to the physical system of our interest and the correrotor, or the standard map. A variety of classical dynamical
sponding quasienergies follow the RMT prediction. Obvi-features emerge from the nature of the ra®mf the two
ously, the result is more reliable in the top plots where thecompeting length scaleéhe well width and field wave-
spacing shows neither a Poisson nor a Wigner distributionength. Many of the dynamical features so observed are ge-
Although the tail part shows Poisson behavior there are sig-
nificant discrepancies in the small spacing. A more correct 1| |-
picture may be closer to the scenario of the chaotic regimes
presented in Fig. 10. r
Shown in Fig. 13 are a few “well converged” states, with
a more stringent convergence criterionM € 1600,
Sy =0.9999). With this criterion we have onlfy, =12 and L
4 for R=1 and 0.5, respectively. The state components ex-
hibit strong fluctuations in the basis. Here again it is hard to 0.6
differentiate the two cases qualitatively. The states corre-—~
sponding toR=0.5 also appear to have exponential tails. To =
see the distribution of the state components, we introduce ¢ g4 [
variable 7,=|,|?/|¥,|? where the overbar stands for the

average over the state components such thafl. As seen

from Fig. 14, the cumulative distribution of for both cases 0.2
is very similar. Considerable deviations from the RMT pre-
dicted cumulative Porter-Thomas distributionl (7)
=erf(\/7/2), may be attributed to the localization of the

0.8 -

states. However, the distribution correspondingRe 0.5 0 e
tends to be closer to the RMT predicted behavior. 0 6 12 18
n
V. SUMMARY AND CONCLUSION FIG. 14. Collective cumulative distribution of the components

. o _ . o of the states shown in Fig. 13. Dotted curve correspondR=td
A particle inside a one-dimensional infinite square wellwhile dashed curve corresponds B=0.5. Solid curve is the
potential in the presence of a time-periodic pulsed field iscumulative Porter-Thomas distribution.
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neric to a wide class of systems of substantial current interPoisson distribution although the corresponding eigenstates

est, viz., externally forced particles in wells. belong to an unbounded phase space. Limited overlap of the
It is shown that when the length scales do not match, evesigenstates results in such deviations. However, the spacing

in perturbative regimes the dynamics can be increasinglyioes not show the RMT predicted Wigner distribution as was

complex wherein all the KAM tori in phase space break up.claimed in an earlier studjl7]. The earlier result is attrib-

As a result the transition to chaos is abrupt, a typical scenarigted to lack of converged states in the statistics.

of non-KAM behavior. Quantum mechanically, the imprint  \yhile the spacing is not very sensitive to classical chaos,

of such a transition is seen as a spread in the bulk(p@t he gistribution of participation ratios of the eigenstates is

localization) of the eigenstates. Thus we realize the lengthshown to be a good measure to distinguish chaotic quantum

scale ratioR as a control parameter for localization in the systems from regular ones. Quantum mechanically, chaotic

weak field regime. regimes are characterized by a log-normal distribution of the

on Increasing the field strength, qhaos a§S|sted d'ff!JS'O articipation ratios. In addition to the above generic quantum
takes place in momentum. From earlier studies of the kicke . . .
eatures, we have also studied nongeneric phenomena like

rotor it is known that the average localization length of the,, 0 " In th diti the ki
eigenstates is directly proportional to the classical diffusion quanium resonance.” 1n the resonance condition, the K-
coefficient. We have shown that in our generalization of thé_1etIC energy of the particle grows quadratically with increas-

kicked rotor also this result grossly explains the localization"d number of kicks. This unbounded energy growth is not
behavior of the eigenstates through the classical transpofffected by the length scale ratio and can enhance ionization
properties. Thus the kicked rotor continues to serve as a usél the finite well system. o _ _
ful model in understanding physical phenomena exhibited by AS far as experimental realization of this work is con-
a larger class of systems. cerned, perhaps both quantum wdl® and cold atom ex-
We have observed, as expected, that in the regular cagerimentg15] are possible candidates. As suggested above,
the nearest neighbor spacing distribution of the quasienergidbe R effects may be best observed at small field strengths
show good agreement with the Poisson distribution. We havand forR>1. Further work is underway exploring the nature
presented evidence to support the suggestion that, in highlgf localization in such systems, including a bounded version
chaotic regimes, the spacings show some deviations from thef the generalized standard map.
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